3 research outputs found

    Amplitude and phase sonar calibration and the use of target phase for enhanced acoustic target characterisation

    Get PDF
    This thesis investigates the incorporation of target phase into sonar signal processing, for enhanced information in the context of acoustical oceanography. A sonar system phase calibration method, which includes both the amplitude and phase response is proposed. The technique is an extension of the widespread standard-target sonar calibration method, based on the use of metallic spheres as standard targets. Frequency domain data processing is used, with target phase measured as a phase angle difference between two frequency components. This approach minimizes the impact of range uncertainties in the calibration process. Calibration accuracy is examined by comparison to theoretical full-wave modal solutions. The system complex response is obtained for an operating frequency of 50 to 150 kHz, and sources of ambiguity are examined. The calibrated broadband sonar system is then used to study the complex scattering of objects important for the modelling of marine organism echoes, such as elastic spheres, fluid-filled shells, cylinders and prolate spheroids. Underlying echo formation mechanisms and their interaction are explored. Phase-sensitive sonar systems could be important for the acquisition of increased levels of information, crucial for the development of automated species identification. Studies of sonar system phase calibration and complex scattering from fundamental shapes are necessary in order to incorporate this type of fully-coherent processing into scientific acoustic instruments

    Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses

    Full text link
    An appropriate copyright notice must be included along with the full citation for the published paper and a Web link to ASA's official online version of the abstract. There are no format restrictions; files prepared and/or formatted by ASA, AIP, or its vendors (e.g., the PDF, PostScript, or HTML article files published in the online journals and proceedings) may be used for this purpose. If a fee is charged for any use of the posted article, ASA permission must be obtained.[EN] The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz. (C) 2011 Acoustical Society of America.The authors would like to thank Dr. Trevor Francis for his insight and valuable help with the computer script of the theoretical model. A.I.-C. gratefully acknowledges funding provided by the Mexican National Committee for Science and Technology (CONACYT).Islas-Cital, A.; Atkins, PR.; Foo, KY.; Pic贸 Vila, R. (2011). Phase calibration of sonar systems using standard targets and dual-frequency transmission pulses. Journal of the Acoustical Society of America. 130(4):1880-1887. doi:10.1121/1.3628325S18801887130
    corecore